2.2.3 Digitale Symboldarstellung
2.2.3.1 Entwicklung nach Zweierpotenzen
2.2.3.2 Codierung und Verarbeitung mittels Maschinen und Algorithmen
2.2.3.2.1 Logische Grundschaltung
analog
<gr.-lat.-fr.>: 1. [einem anderen, Vergleichbaren] entsprechend, ähnlich; gleichartig; vgl. ...isch/-. 2. kontinuierlich, stufenlos, stetig veränderbar (Informationstechn.); Ggs. 2 digital.
Analogrechner
der; -s, -: Rechenanlage, in der die Ausgangswerte u. das Ergebnis einer Rechenaufgabe als physikalische Größen dargestellt werden; Ggs. Digitalrechner.
digital
1. <lat.>: mit dem Finger (Med.).
2. <lat.-engl.>: Signale, Daten in Ziffern (d. h. in Schritten u. nicht stufenlos bzw. analog) darstellend od. dargestellt; digitalisiert; Ggs. analog (2).
digitalisieren
<lat.-engl.>: analoge Signale, Daten in digitale Werte (meist Binärziffern) umwandeln.
Digitalrechner
der; -s, -: mit nicht zusammenhängenden Einheiten (Ziffern, Buchstaben) arbeitende Rechenanlage; elektronischer Rechner, der mit Binärziffern arbeitet; Ggs. Analogrechner.
Digitaltonband
das; -[e]s, ...bänder: (in Japan entwickeltes) 3,8 mm schmales Magnetband, bei dem die Aufnahme der Schallsignale in digitalisierter Form, d. h. bei voll erhaltener Tongüte, erfolgt.
diskret
<lat.-mlat.-fr.>: 1. a) so unauffällig behandelt, ausgeführt o. Ä., dass es von anderen kaum od. gar nicht bemerkt wird; vertraulich; b) taktvoll, rücksichtsvoll; Ggs. indiskret. 2. a) (von sprachlichen Einheiten) abgegrenzt, abgetrennt, abgrenzbar, z. B. durch Substitution (Sprachw.); b) in einzelne Punkte zerfallend, vereinzelt, abzählbar (bezogen auf eine Folge von Ereignissen od. Symbolen; Techn.); diskrete Zahlenwerte: Zahlenwerte, die durch endliche Intervalle (4) voneinander getrennt stehen (Math., Phys.).
kontinuierlich
stetig, fortdauernd, unaufhörlich, durchlaufend; Ggs. diskontinuierlich.
medium
<lat.-engl.>: 1. mittelgroß (als Kleidergröße; Abk.: M). 2. [auch: ] (von Fleisch) nicht ganz durchgebraten (Gastr.).
Medium
<lat.; Mitte> das; -s, ...ien u. ...ia: 1. (Plural selten auch: ...ia) vermittelndes Element. 2. (Plural ...ia; selten) Mittelform zwischen Aktiv u. Passiv (bes. im Griechischen; im Deutschen reflexiv ausgedrückt; Sprachw.). 3. (Plural ...ien) Träger bestimmter physikalischer od. chemischer Vorgänge (Phys.; Chem.). 4. (Plural ...ien) a) jmd., der für Verbindungen zum übersinnlichen Bereich besonders befähigt ist (Parapsychol.); b) jmd., an dem sich aufgrund seiner körperlichen, seelischen Beschaffenheit Experimente, bes. Hypnoseversuche, durchführen lassen. 5. (meist Plural) a) (Plural selten auch: ...ia) Einrichtung, organisatorischer u. technischer Apparat für die Vermittlung von Meinungen, Informationen od. Kulturgütern; eines der Massenmedien Film, Funk, Fernsehen, Presse; b) (Plural selten auch: ...ia) Unterrichts[hilfs]mittel, das der Vermittlung von Information u. Bildung dient; c) (Plural meist ...ia) für die Werbung benutztes Kommunikationsmittel, Werbeträger.
Analogrechner
Beispiel: Rechenschieber für Anfänger
Beispiel: Addition von elektrischen Spannungen
Prinzip des Analogrechners
Die Operanden werden durch meßbare Größen dargestellt (Stellgrößen, Parameter).
Die Operation wird in Analogie zu einem physikalischen Vorgang, der von den Stellgrößen abhängt, aufgefaßt.
Das Resultat der Operation entspricht dem meßbaren Ausgang des physikalischen Vorgangs.
Stellgrößen (Operanden) und das Resultat (Ergebnis der Rechnung) sind nur mit Meß- und Ablesefehler behaftet darzustellen und zu ermitteln.
Die Rechnung dauert genau so lange wie der physikalische Prozeß, meist läuft die Rechnung also in Echtzeit, ohne Verzögerung, ab. Dies ist ein enormer Vorteil für die Analogmedien.
Analogmedien
Photoapparat
Funktionsprinzip Schallplatte
Aufnahme
Wiedergabe
Tonabnehmer
Versuch mit Stecknadel und Schallplatte
Operationen: Verändern von Tonhöhe und Lautstärke
Funktionsprinzip Tonbandgerät
Aufnahme
Wiedergabe
Digitalrechner
Beispiel: Fingerrechnen (digitus: der Finger)
Fingerzählen binär
Beispiel: Abakus
Prinzip des Digitalrechners
Die Operanden werden durch diskrete (wohlunterscheidbare) Zustände eines Systems dargestellt. Die Operation wird durch einen Algorithmus realisiert, dessen Ergebnis sich wiederum in diskreten Skalenzuständen ausdrückt.
Rundungsfehler entstehen nicht durch Messung oder Ablesung; im Rahmen der Darstellungsgenauigkeit sind alle Werte exakt.
Digitalmedien
Lochkarte
Festplatte
CD-ROM
Digitalbilder als Beispiel:
Offset
Pixelbilder
Portrait
Codierung?
=
1122233
1222222
0122222
0012222
0111111
bei vier Farben (Graustufen) 0 -- weiß bis 3 -- schwarz
Operationen: Verändern der Größe und der Helligkeit, Invertieren (Negativ herstellen)
heller
negativ
Ausblick auf die anderen Medientypen
Ist das Buch ein Analog- oder ein Digitalmedium?
Wieso gibt es kaum noch Analogrechner?
Je komplexer die Operation, desto komplexer muß das physikalische System beim Analogrechner sein. Analogrechner gerieten an die Grenzen der physikalischen Machbarkeit: Zahnräder brachen, die Reibung zwischen den beweglichen Teilen wurde übergroß.
Und wieso verschwinden die Analogmedien?
Digitale Symboldarstellung
Binäre Stellenwertschreibweise
Entwicklung nach Zweierpotenzen
30610 =
1*28+0*27+0*26+1*25+1*24+0*23+0*22+1*21+0*20
=
1001100102
binäre Codierung des Bildes
=
1122233
1222222
0122222
0012222
0111111
bei vier Farben (Graustufen) 0 -- weiß bis 3 -- schwarz: 11
dezimal binär
0 00
1 01
2 10
3 11
Darstellung auf diskreter Skala der Dezimalzahl »306«
30610 =
und des Bildausschnitts
=
01011010101111
01101010101010
00011010101010
00000110101010
00010101010101
=
ooooo
ooooooo
oooooooo
ooooooooo
oooooooo
oder linear
ooooooooooooooooooooooooooooooooooooo
Ausblick auf andere Medientypen
Codierung und Verarbeitung mittels Maschinen und Algorithmen
Logische Grundschaltungen: calculemus!
UND
Symbol der UND-Schaltung
Wahrheitswertetafel/Funktionstabelle
1 entspricht "wahr", 0 entspricht "falsch"
Eingang1 Eingang2 Ausgang
1 1 1
1 0 0
0 1 0
0 0 0
ODER
Symbol der ODER-Schaltung
Funktionstabelle
Eingang1 Eingang2 Ausgang
1 1 1
1 0 1
0 1 1
0 0 0
NICHT
Symbol der NICHT-Schaltung
Funktionstabelle
a b
1 0
0 1
Schaltnetze
Beispiel
logischer Ausdruck
?
Funktionstabelle
?
Halbaddierer
Aufgabenstellung
0+0 = 0
0+1 = 1
1+0 = 1 und
1+1 = 10
Funktionstabelle
a b s ü
0 0 (1)
0 1 (2)
1 0 (3)
1 1 (4)
logischer Ausdruck
ü =
s =
Schaltnetz
Volladdierer
Das Problem des Übertrags
0 1 1 0
+ 0 0 1 1
0 1 1 0 (Übertrag)
____________________
1 0 0 1
Rückgriff auf die Halbaddierer
Einsparung des dritten Halbaddierers
Übung: Füllen Sie folgende Wertetabelle aus:
a 1 1 1 1 0 0 0 0
b 1 1 0 0 1 1 0 0
c 1 0 1 0 1 0 1 0
ü2
ü1
Ü
Womit läßt sich funktionsgleich der dritte Halbaddierer ersetzen?
Subtraktion durch Addition des Zweierkomplements
Negation mit endlicher Registerbreite
1101100110
0010011001
1111111111
Addiert man anschließend 1, so entsteht:
10000000000
wobei die höchstwertige Stelle durch Überlauf des Registers unter den Tisch fällt:
0000000000
Subtraktion
Dualzahl1 + Zweierkomplement(Dualzahl2) = Dualzahl1 - Dualzahl2.
Zweierkomplement:
Vertauschen aller 0 durch 1, Addition von 1.
Übung
Berechnen Sie 9-24 binär mit acht Bit breiten Registern.
Voraussetzung digitaler Verarbeitung ist Codierung durch endlich viele Symbole
Rasterung: Digitalisierung der Parameter Zeit und Raum
Quantisierung: Digitalisierung der Meßgröße
Beispiel: digitales Video zeigen
Leitfrage: wie wird ein bestimmter Medientyp codiert?
Welche ist die spezifische Differenz zum entsprechenden analogen Medium?
Auf einem solcherart codierten Material können Algorithmen operieren und so das Material verarbeiten
Beispiel: invertieren eines digitalen Bildes
Leitfrage: welche sind die Operationen auf den Codes? Was bedeuten sie, wenn man sie mit der menschlichen Wahrnehmung konfrontiert?
Solche Symbolmanipulationen können durch digital arbeitende Maschinen (Hardware und Software) realisiert werden, genau wie das Rechnen
Beispiel: Digitalkameras
Eine Maschine für alle digital codierbaren Materialien: der Computer als medienintegrierendes Medium
Näher zu klären:
Wie sehen Codes aus? Gibt es gute und schlechte Codes? (Stichwort »Rauschen«, »Redundanz«, »Fehlerkorrektur« und »Kompression«
Was hat das codierte Material mit dem ursprünglichen zu tun? (Stichwort »Information«)
verschiedene Darstellungen in wachsender Farbtiefe
Was sind genau Programme? Was ist durch Programme machbar (berechenbar), was nicht?
Folgende ist die Kodierung eines 8*8-Graustufenbildes. Der Übersichtlichkeit halber sind die Nullen und Einsen zu Dreiergruppen zusammengefaßt:
ooo ooo ooo ooo ooo ooo ooo o o oo ooo ooo oo oo ooo oo o oo oo ooo oo oo ooo ooo ooo o ooo ooo ooo ooo ooo ooo oo
Das Bild habe vier mögliche Grauwerte: 0 bis 3. Es ist binär kodiert.
Dekodieren Sie die Bitfolge und zeichnen Sie das Bild.
Was stellt es dar?
Wie lautet die präzise gefaßte Vorschrift, ein Negativ von dem Bild anzufertigen?
Führen Sie diese Invertierung aus, zeichnen Sie das entstehende Bild und notieren Sie die Bitfolge in obiger Form.
Bitte versehen Sie Ihre Lösung mit Ihrem Namen und der Matrikelnummer sowie dem Fach, zu dem Sie die Veranstaltung und den Leistungsnachweis gezählt wissen wollen, und geben Sie die Lösung vor der nächsten Sitzung im Seminarraum ab.
Nächstes Kapitel:
Kodierung und Information